#FactCheck: IAF Shivangi Singh was captured by Pakistan army after her Rafale fighter jet was shot down
Executive Summary:
False information spread on social media that Flight Lieutenant Shivangi Singh, India’s first female Rafale pilot, had been captured by Pakistan during “Operation Sindoor”. The allegations are untrue and baseless as no credible or official confirmation supports the claim, and Singh is confirmed to be safe and actively serving. The rumor, likely originating from unverified sources, sparked public concern and underscored the serious threat fake news poses to national security.
Claim:
An X user posted stating that “ Initial image released of a female Indian Shivani singh Rafale pilot shot down in Pakistan”. It was falsely claimed that Flight Lieutenant Shivangi Singh had been captured, and that the Rafale aircraft was shot down by Pakistan.


Fact Check:
After doing reverse image search, we found an instagram post stating the two Indian Air Force pilots—Wing Commander Tejpal (50) and trainee Bhoomika (28)—who had ejected from a Kiran Jet Trainer during a routine training sortie from Bengaluru before it crashed near Bhogapuram village in Karnataka. The aircraft exploded upon impact, but both pilots were later found alive, though injured and exhausted.

Also we found a youtube channel which is showing the video from the past and not what it was claimed to be.

Conclusion:
The false claims about Flight Lieutenant Shivangi Singh being captured by Pakistan and her Rafale jet being shot down have been debunked. The image used was unrelated and showed IAF pilots from a separate training incident. Several media also confirmed that its video made no mention of Ms. Singh’s arrest. This highlights the dangers of misinformation, especially concerning national security. Verifying facts through credible sources and avoiding the spread of unverified content is essential to maintain public trust and protect the reputation of those serving in the armed forces.
- Claim: False claims about Flight Lieutenant Shivangi Singh being captured by Pakistan and her Rafale jet being shot down
- Claimed On: Social Media
- Fact Check: False and Misleading
Related Blogs

Introduction
Microsoft has unveiled its ambitious roadmap for developing a quantum supercomputer with AI features, acknowledging the transformative power of quantum computing in solving complex societal challenges. Quantum computing has the potential to revolutionise AI by enhancing its capabilities and enabling breakthroughs in different fields. Microsoft’s groundbreaking announcement of its plans to develop a quantum supercomputer, its potential applications, and the implications for the future of artificial intelligence (AI). However, there is a need for regulation in the realms of quantum computing and AI and significant policies and considerations associated with these transformative technologies. This technological advancement will help in the successful development and deployment of quantum computing, along with the potential benefits and challenges associated with its implementation.
What isQuantum computing?
Quantum computing is an emerging field of computer science and technology that utilises principles from quantum mechanics to perform complex calculations and solve certain types of problems more efficiently than classical computers. While classical computers store and process information using bits, quantum computers use quantum bits or qubits.
Interconnected Future
Quantum computing promises to significantly expand AI’s capabilities beyond its current limitations. Integrating these two technologies could lead to profound advancements in various sectors, including healthcare, finance, and cybersecurity. Quantum computing and artificial intelligence (AI) are two rapidly evolving fields that have the potential to revolutionise technology and reshape various industries. This section explores the interdependence of quantum computing and AI, highlighting how integrating these two technologies could lead to profound advancements across sectors such as healthcare, finance, and cybersecurity.
- Enhancing AI Capabilities:
Quantum computing holds the promise of significantly expanding the capabilities of AI systems. Traditional computers, based on classical physics and binary logic, need help solving complex problems due to the exponential growth of computational requirements. Quantum computing, on the other hand, leverages the principles of quantum mechanics to perform computations on quantum bits or qubits, which can exist in multiple states simultaneously. This inherent parallelism and superposition property of qubits could potentially accelerate AI algorithms and enable more efficient processing of vast amounts of data.
- Solving Complex Problems:
The integration of quantum computing and AI has the potential to tackle complex problems that are currently beyond the reach of classical computing methods. Quantum machine learning algorithms, for example, could leverage quantum superposition and entanglement to analyse and classify large datasets more effectively. This could have significant applications in healthcare, where AI-powered quantum systems could aid in drug discovery, disease diagnosis, and personalised medicine by processing vast amounts of genomic and clinical data.
- Advancements in Finance and Optimisation:
The financial sector can benefit significantly from integrating quantum computing and AI. Quantum algorithms can be employed to optimise portfolios, improve risk analysis models, and enhance trading strategies. By harnessing the power of quantum machine learning, financial institutions can make more accurate predictions and informed decisions, leading to increased efficiency and reduced risks.
- Strengthening Cybersecurity:
Quantum computing can also play a pivotal role in bolstering cybersecurity defences. Quantum techniques can be employed to develop new cryptographic protocols that are resistant to quantum attacks. In conjunction with quantum computing, AI can further enhance cybersecurity by analysing massive amounts of network traffic and identifying potential vulnerabilities or anomalies in real time, enabling proactive threat mitigation.
- Quantum-Inspired AI:
Beyond the direct integration of quantum computing and AI, quantum-inspired algorithms are also being explored. These algorithms, designed to run on classical computers, draw inspiration from quantum principles and can improve performance in specific AI tasks. Quantum-inspired optimisation algorithms, for instance, can help solve complex optimisation problems more efficiently, enabling better resource allocation, supply chain management, and scheduling in various industries.
How Quantum Computing and AI Should be Regulated-
As quantum computing and artificial intelligence (AI) continues to advance, questions arise regarding the need for regulations to govern these technologies. There is debate surrounding the regulation of quantum computing and AI, considering the potential risks, ethical implications, and the balance between innovation and societal protection.
- Assessing Potential Risks: Quantum computing and AI bring unprecedented capabilities that can significantly impact various aspects of society. However, they also pose potential risks, such as unintended consequences, privacy breaches, and algorithmic biases. Regulation can help identify and mitigate these risks, ensuring these technologies’ responsible development and deployment.
- Ethical Implications: AI and quantum computing raise ethical concerns related to privacy, bias, accountability, and the impact on human autonomy. For AI, issues such as algorithmic fairness, transparency, and decision-making accountability must be addressed. Quantum computing, with its potential to break current encryption methods, requires regulatory measures to protect sensitive information. Ethical guidelines and regulations can provide a framework to address these concerns and promote responsible innovation.
- Balancing Innovation and Regulation: Regulating quantum computing and AI involves balancing fostering innovation and protecting society’s interests. Excessive regulation could stifle technological advancements, hinder research, and impede economic growth. On the other hand, a lack of regulation may lead to the proliferation of unsafe or unethical applications. A thoughtful and adaptive regulatory approach is necessary, considering the dynamic nature of these technologies and allowing for iterative improvements based on evolving understanding and risks.
- International Collaboration: Given the global nature of quantum computing and AI, international collaboration in regulation is essential. Harmonising regulatory frameworks can avoid fragmented approaches, ensure consistency, and facilitate ethical and responsible practices across borders. Collaborative efforts can also address data privacy, security, and cross-border data flow challenges, enabling a more unified and cooperative approach towards regulation.
- Regulatory Strategies: Regulatory strategies for quantum computing and AI should adopt a multidisciplinary approach involving stakeholders from academia, industry, policymakers, and the public. Key considerations include:
- Risk-based Approach: Regulations should focus on high-risk applications while allowing low-risk experimentation and development space.
- Transparency and Explainability: AI systems should be transparent and explainable to enable accountability and address concerns about bias, discrimination, and decision-making processes.
- Privacy Protection: Regulations should safeguard individual privacy rights, especially in quantum computing, where current encryption methods may be vulnerable.
- Testing and Certification: Establishing standards for the testing and certification of AI systems can ensure their reliability, safety, and adherence to ethical principles.
- Continuous Monitoring and Adaptation: Regulatory frameworks should be dynamic, regularly reviewed, and adapted to keep pace with the evolving landscape of quantum computing and AI.
Conclusion:
Integrating quantum computing and AI holds immense potential for advancing technology across diverse domains. Quantum computing can enhance the capabilities of AI systems, enabling the solution of complex problems, accelerating data processing, and revolutionising industries such as healthcare, finance, and cybersecurity. As research and development in these fields progress, collaborative efforts among researchers, industry experts, and policymakers will be crucial in harnessing the synergies between quantum computing and AI to drive innovation and shape a transformative future.The regulation of quantum computing and AI is a complex and ongoing discussion. Striking the right balance between fostering innovation, protecting societal interests, and addressing ethical concerns is crucial. A collaborative, multidisciplinary approach to regulation, considering international cooperation, risk assessment, transparency, privacy protection, and continuous monitoring, is necessary to ensure these transformative technologies' responsible development and deployment.
.webp)
The Delhi High Court vide order dated 21st November 2024 directed the Centre to nominate members for a committee constituted to examine the issue of deepfakes. The court was informed by the Union Ministry of Electronics and Information Technology (MeitY) that a committee had been formed on 20 November 2024 on deepfake matters. The Delhi High Court passed an order while hearing two writ petitions against the non-regulation of deepfake technology in the country and the threat of its potential misuse. The Centre submitted that it was actively taking measures to address and mitigate the issues related to deepfake technology. The court directed the central government to nominate the members within a week.
The court further stated that the committee shall examine and take into consideration the suggestions filed by the petitioners and consider the regulations as well as statutory frameworks in foreign countries like the European Union. The court has directed the committee to invite the experiences and suggestions of stakeholders such as intermediary platforms, telecom service providers, victims of deepfakes, and websites which provide and deploy deepfakes. The counsel for the petitioners stated that delay in the creation, detection and removal of deepfakes is causing immense hardship to the public at large. Further, the court has directed the said committee to submit its report, as expeditiously as possible, preferably within three months. The matter is further listed on 24th March 2025.
CyberPeace Outlook
Through the issue of misuse of deepfakes by bad actors, it has become increasingly difficult for users to differentiate between genuine and altered content created by deepfakes. This increasing misuse has led to a rise in cyber crimes and poses dangers to users' privacy. Bad actors use any number of random pictures or images collected from the internet to create such non-consensual deepfake content. Such deepfake videos further pose risks of misinformation and fake news campaigns with the potential to sway elections, cause confusion and mistrust in authorities, and more.
The conceivable legislation governing the deepfake is the need of the hour. It is important to foster regulated, ethical and responsible consumption of technology. The comprehensive legislation governing the issue can help ensure technology can be used in a better manner. The dedicated deepfake regulation and deploying ethical practices through a coordinated approach by concerned stakeholders can effectively manage the problems presented by the misuse of deepfake technology. Legal frameworks in this regard need to be equipped to handle the challenges posed by deepfake and AI. Accountability in AI is also a complex issue that requires comprehensive legal reforms. The government should draft policies and regulations that balance innovation and regulation. Through a multifaceted approach and comprehensive regulatory landscape, we can mitigate the risks posed by deepfakes and safeguard privacy, trust, and security in the digital age.
References
- https://www.devdiscourse.com/article/law-order/3168452-delhi-high-court-calls-for-action-on-deepfake-regulation
- https://images.assettype.com/barandbench/2024-11-23/w63zribm/Chaitanya_Rohilla_vs_Union_of_India.pdf

Introduction
In the sprawling online world, trusted relationships are frequently taken advantage of by cybercriminals seeking to penetrate guarded systems. The Watering Hole Attack is one advanced method, which focuses on a user’s ecosystem by compromising the genuine sites they often use. This attack method is different from phishing or direct attacks as it quietly exploits the everyday browsing of the target to serve malicious content. The quiet and exact nature of watering hole attacks makes them prevalent amongst Advanced Persistent Threat (APT) groups, especially in conjunction with state-sponsored cyber-espionage operations.
What Qualifies as a Watering Hole Attack?
A Watering Hole Attack targets and infects a trusted website. The targeted website is one that is used by a particular organization or community, such as a specific industry sector. This type of cyberattack is analogous to the method of attack used by animals and predators waiting by the water’s edge for prey to drink. Attackers prey on their targets by injecting malicious code, such as an exploit kit or malware loader, into websites that are popular with their victims. These victims are then infected when they visit said websites unknowingly. This opens as a gateway for attackers to infiltrate corporate systems, harvest credentials, and pivot across internal networks.
How Watering Hole Attacks Unfold
The attack lifecycle usually progresses as follows:
- Reconnaissance - Attackers gather intelligence on the websites frequented by the target audience, including specialized communities, partner websites, or local news sites.
- Website Exploitation - Through the use of outdated CMS software and insecure plugins, attackers gain access to the target website and insert malicious code such as JS or iframe redirections.
- Delivery and Exploitation - The visitor’s browser executes the malicious code injected into the page. The code might include a redirection payload which sends the user to an exploit kit that checks the user’s browser, plugins, operating system, and other components for vulnerabilities.
- Infection and Persistence - The infected system malware such as RATs, keyloggers, or backdoors. These enable lateral and long-term movements within the organisation for espionage.
- Command and Control (C2) - For further instructions, additional payload delivery, and stolen data retrieval, infected devices connect to servers managed by the attackers.
Key Features of Watering Hole Attacks
- Indirect Approach: Instead of going after the main target, attackers focus on sites that the main target trusts.
- Supply-Chain-Like Impact: An infected industry portal can affect many companies at the same time.
- Low Profile: It is difficult to identify since the traffic comes from real websites.
- Advanced Customization: Exploit kits are known to specialize in making custom payloads for specific browsers or OS versions to increase the chance of success.
Why Are These Attacks Dangerous?
Worming hole attacks shift the battlefield to new grounds in cyber warfare on the web. They eliminate the need for firewalls, email shields, and other security measures because they operate on the traffic to and from real, trusted websites. When the attacks work as intended, the following consequences can be expected:
- Stealing Credentials: Including privileged accounts and VPN credentials.
- Espionage: Theft of intellectual property, defense blueprints, or government confidential information.
- Supply Chain Attacks: Resulting in a series of infections among related companies.
- Zero-Day Exploits: Including automated attacks using zero-day exploits for full damage.
Incidents of Primary Concern
The implications of watering hole attacks have been felt in the real world for quite some time. An example from 2019 reveals this, where a known VoIP firm’s site was compromised and used to spread data-stealing malware to its users. Likewise, in 2014, the Operation Snowman campaign—which seems to have a state-backed origin—attempted to infect users of a U.S. veterans’ portal in order to gain access to visitors from government, defense, and related fields. Rounding up the list, in 2021, cybercriminals attacked regional publications focusing on energy, using the publications to spread malware to company officials and engineers working on critical infrastructure, as well as to steal data from their systems. These attacks show the widespread and dangerous impact of watering hole attacks in the world of cybersecurity.
Detection Issues
Due to the following reasons, traditional approaches to security fail to detect watering hole attacks:
- Use of Authentic Websites: Attacks involving trusted and popular domains evade detection via blacklisting.
- Encrypted Traffic: Delivering payloads over HTTPS conceals malicious scripts from being inspected at the network level.
- Fileless Methods: Using in-memory execution is a modern campaign technique, and detection based on signatures is futile.
Mitigation Strategies
To effectively neutralize the threat of watering hole attacks, an organization should implement a defense-in-depth strategy that incorporates the following elements:
- Patch Management and Hardening -
- Conduct routine updates on operating systems, web browsers, and extensions to eliminate exploit opportunities.
- Either remove or reduce the use of high-risk elements such as Flash and Java, if feasible.
- Network Segmentation - Minimize lateral movement by isolating critical systems from the general user network.
- Behavioral Analytics - Implement Endpoint Detection and Response (EDR) tools to oversee unusual behaviors on processes—for example, script execution or dubious outgoing connections.
- DNS Filtering and Web Isolation - Implement DNS-layer security to deny access to known malicious domains and use browser isolation for dangerous sites.
- Threat Intelligence Integration - Track watering hole threats and campaigns for indicators of compromise (IoCs) on advisories and threat feeds.
- Multi-Layer Email and Web Security - Use web gateways integrated with dynamic content scanning, heuristic analysis, and sandboxing.
- Zero Trust Architecture - Apply least privilege access, require device attestation, and continuous authentication for accessing sensitive resources.
Incident Response Best Practices
- Forensic Analysis: Check affected endpoints for any mechanisms set up for persistence and communication with C2 servers.
- Log Review: Look through proxy, DNS, and firewall logs to detect suspicious traffic.
- Threat Hunting: Search your environment for known Indicators of Compromise (IoCs) related to recent watering hole attacks.
- User Awareness Training: Help employees understand the dangers related to visiting external industry websites and promote safe browsing practices.
The Immediate Need for Action
The adoption of cloud computing and remote working models has significantly increased the attack surface for watering hole attacks. Trust and healthcare sectors are increasingly targeted by nation-state groups and cybercrime gangs using this technique. Not taking action may lead to data leaks, legal fines, and break-ins through the supply chain, which damage the trustworthiness and operational capacity of the enterprise.
Conclusion
Watering hole attacks demonstrate how phishing attacks evolve from a broad attack to a very specific, trust-based attack. Protecting against these advanced attacks requires the zero-trust mindset, adaptive defenses, and continuous monitoring, which is multicentral security. Advanced response measures, proactive threat intelligence, and detection technologies integration enable organizations to turn this silent threat from a lurking predator to a manageable risk.
References
- https://www.fortinet.com/resources/cyberglossary/watering-hole-attack
- https://en.wikipedia.org/wiki/Watering_hole_attack
- https://www.proofpoint.com/us/threat-reference/watering-hole
- https://www.techtarget.com/searchsecurity/definition/watering-hole-attack